SAFE HANDS \& IIT-ian's PACE

MONTHLY MAJOR TEST-07 (NB-15 NEET) ANS KEY Dt. 05-05-2023

PHYSICS	
Q. NO.	[ANS]
1	C
2	A
3	B
4	B
5	B
6	C
7	A
8	B
9	C
10	A
11	A
12	B
13	A
14	D
15	A
16	C
17	D
18	A
19	A
20	A
21	A
22	D
23	A
24	B
25	A
26	A
27	C
28	D
29	D
30	B
31	A
32	D
33	A
34	A
35	B
36	B
37	B
38	C
39	A
40	D
41	D
42	B
43	A
44	C
45	B
46	B
47	B
48	D
49	A
50	A

CHEMISTRY	
Q. NO.	[ANS]
51	A
52	B
53	B
54	B
55	D
56	C
57	C
58	A
59	B
60	B
61	B
62	C
63	B
64	A
65	A
66	C
67	C
68	C
69	B
70	D
71	C
72	B
73	A
74	C
75	B
76	B
77	B
78	A
79	A
80	C
81	D
82	B
83	A
84	C
85	A
86	C
87	D
88	B
89	C
90	D
91	B
92	A
93	D
94	B
95	C
96	D
97	D
98	B
99	B
100	D

BOTANY	
Q. NO.	[ANS]
101	C
102	B
103	C
104	A
105	D
106	D
107	D
108	B
109	D
110	C
111	D
112	A
113	C
114	C
115	C
116	B
117	C
118	B
119	B
120	C
121	A
122	B
123	C
124	D
125	A
126	D
127	A
128	B
129	C
130	B
131	C
132	B
133	A
134	C
135	A
136	D
137	B
138	A
139	C
140	C
141	A
142	B
143	C
144	B
145	D
146	A
147	B
148	C
149	C
150	A

ZOOLOGY	
Q. NO.	[ANS]
151	C
152	B
153	C
154	A
155	C
156	D
157	B
158	D
159	C
160	B
161	B
162	A
163	A
164	C
165	B
166	B
167	D
168	B
169	B
170	C
171	C
172	C
173	C
174	B
175	D
176	C
177	C
178	C
179	C
180	A
181	A
182	A
183	C
184	C
185	B
186	A
187	B
188	B
189	B
190	A
191	C
192	C
193	D
194	A
195	D
196	A
197	A
198	D
199	A
200	A

PHYSICS SOLUTIONS

1. $R=\frac{V}{I}=\frac{20 \pm 1}{2.5 \pm 0.5}=8 \pm \Delta R$
the error in the measurement is

$$
\begin{aligned}
=\frac{\Delta \mathrm{V}}{\mathrm{~V}}+\frac{\Delta \mathrm{I}}{\mathrm{I}}=\frac{1}{20}+\frac{0.5}{2.5} & =0.05+0.2 \\
& =0.25
\end{aligned}
$$

$$
\Delta R=0.25 R=0.25 \times 8=2
$$

Thus the resistance of the wire with the error is $=8 \pm 2$ ohm.

Hence correct answer is (C).
02. As shown in fig for quarter revolution
$\Delta \vec{v}=\vec{v}_{2}-\vec{v}_{1}$ and $\theta=90 \circ$,
So $\Delta \overrightarrow{\mathrm{v}}=\sqrt{\mathrm{v}^{2}+\mathrm{v}^{2}}=(\sqrt{2}) \mathrm{v}$
$\phi=\tan ^{-}\left(\frac{\mathrm{v}}{\mathrm{v}}\right)=45 \mathrm{o}$
$\Delta \overrightarrow{\mathrm{v}}=\sqrt{2} \mathrm{v}$ south west.

Hence correct answer is (A).
03. Car covers a distance s before coming to rest using relation as $v^{2}=u^{2}+2 a s$
$\Rightarrow \mathrm{s}=\frac{20 \times 20}{4 \times 2}=50 \mathrm{~m}$
To avoid the clash the remaining distance $100-50=50 \mathrm{~m}$ must be covered by the car with uniform velocity $20 \mathrm{~m} / \mathrm{s}$ during the reaction time $\Delta \mathrm{t}$.

Hence $\frac{50}{\Delta \mathrm{t}}=20$ or $\Delta \mathrm{t}=\frac{50}{20}=2.5 \mathrm{sec}$
Hence correct answer is (B)
04. Let s be the distance between that two spots.

Also assume that the velocity of the motor boat in still water is v and the velocity of flow of water is u.

Then, for downward journey,

$$
\begin{equation*}
s / t_{1}=v+u \tag{1}
\end{equation*}
$$

For upward journey,

$$
\begin{equation*}
\mathrm{s} / \mathrm{t}_{2}=\mathrm{v}-\mathrm{u} \tag{2}
\end{equation*}
$$

Adding eq. (1) to (2),

$$
\begin{gathered}
s / t_{1}+s / t_{2}=2 v \\
o r t=\frac{s}{v}=\frac{2 t_{1} t_{2}}{\left(t_{1}+t_{2}\right)}=\frac{2 \times 8 \times 12}{(8+12)}=9.6 \mathrm{hr}
\end{gathered}
$$

Hence correct answer is (B)
05. Let the ball B hits the ball A after t sec

The X-component of velocity of A is
$v_{0} \cos 37 \circ=700 \cos 370$
The X-compoment of position of B is
$300 \cos 370$
The collision will take place when the X-coordinate of A is the same as that of B.

As the collision takes place at a time t, hence
$700 \cos 370 \times t=300 \cos 370$
or $t=(300 / 700)=(3 / 7) \mathrm{sec}$
In this time the ball B has fallen through a distance
$y=-1 / 2 \mathrm{gt}^{2}($ Free fall of body B)

$$
=-1 / 2 \times 980 \times(3 / 7)^{2}=-90 \mathrm{~cm}
$$

Hence the ball B falls a distance 90 cm
Hence correct answer is (B)
06. Total mass $=80+40=120 \mathrm{~kg}$

The rope cannot with stand this load so the fire man should slide down the rope with some acceleration
\therefore The maximum tension $=100 \times 9.8 \mathrm{~N}$

$$
\mathrm{m}(\mathrm{~g}-\mathrm{a})=\text { tension, } 120(9.8-\mathrm{a})=100 \times 9.8
$$

$\Rightarrow \mathrm{a}=1.63 \mathrm{~m} / \mathrm{s}^{2}$
Hence correct answer is (C)
07. The engine, coach, coupling and resistance are,
shown in fig
Driving force $=4500 \mathrm{~N}$
Opposing force (Resistance)

$$
\stackrel{=\frac{(5+4) 10^{4}}{100}=900 \mathrm{~N}}{\mathrm{COACH}} \rightarrow \underset{\mathrm{~T}}{\substack{\text { ERIVING } \\ \text { FORCE }}}
$$

Resultant force $=4500-900=3600 \mathrm{~N}$
Mass of engine and coach $=9 \times 10^{4} \mathrm{~kg}$
According to Newton's law, F = ma
$\therefore 3600=9 \times 10^{4} a$
or $a=(3600) /\left(9 \times 10^{4}\right)=0.04 \mathrm{~m} / \mathrm{sec}^{2}$
So acceleration of the train $=0.04 \mathrm{~m} / \mathrm{sec}^{2}$
Now considering the equilibrium of the coach only, we have

$$
\begin{aligned}
& (T-R)=4 \times 10^{4} \times 0.04 \quad(\because F=m a) \\
& \text { or } T-\frac{4 \times 10^{4}}{100}=4 \times 10^{4} \times 0.04, \\
& T=4 \times 10^{4} \times 0.04+4 \times 10^{2} \\
& \quad=1600+400=2000 \mathrm{~N}
\end{aligned}
$$

Hence correct answer is (A)
08. b
09. $\Delta \mathrm{k}=\mathrm{W}$
(Work energy theorem)

$$
\begin{aligned}
\left(\frac{1}{2} m v^{2}-0\right) & =F S \\
\frac{1}{2} m v^{2} & =\mu \mathrm{mgS}
\end{aligned}
$$

$$
\begin{aligned}
S=\frac{\mathrm{v}^{2}}{2 \mu \mathrm{~g}} \quad & \mathrm{v} \rightarrow \text { same } \\
& \mu \rightarrow \text { same } \\
\mathrm{S} & \rightarrow \text { same }
\end{aligned}
$$

10. Let m_{1} and m_{2} be the masses of electron and hydrogen atom respectively. If u_{1} and v_{1} be the initial and final velocities of electron, then
initial kinetic energy of electron

$$
\mathrm{K}_{\mathrm{i}}=\left(\frac{1}{2}\right) \mathrm{mu}_{1}^{2}
$$

final kinetic energy of electron

$$
\mathrm{K}_{\mathrm{f}}=\left(\frac{1}{2}\right) \mathrm{m} \mathrm{v}_{1}^{2}
$$

Fractional decrease in K.E.,

$$
\begin{equation*}
\frac{\mathrm{K}_{\mathrm{i}}-\mathrm{K}_{\mathrm{f}}}{\mathrm{~K}_{\mathrm{i}}}=1-\frac{\mathrm{v}_{\mathrm{l}}^{2}}{\mathrm{u}_{1}^{2}} \tag{1}
\end{equation*}
$$

For such a collision, we have

$$
\begin{align*}
v_{1} & =\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) u_{1} \\
\therefore \quad & \frac{v_{1}}{u_{1}}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) \tag{2}
\end{align*}
$$

From eqs. (1) and (2) we have

$$
\begin{aligned}
& \frac{\mathrm{K}_{\mathrm{i}}-\mathrm{K}_{\mathrm{f}}}{\mathrm{~K}_{\mathrm{i}}}=1-\left(\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)^{2} \\
& \quad=\frac{4 \mathrm{~m}_{1} \mathrm{~m}_{2}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)^{2}} \\
& \text { or } \frac{\mathrm{K}_{\mathrm{i}}-\mathrm{K}_{\mathrm{f}}}{\mathrm{~K}_{\mathrm{i}}}=\frac{4\left(\mathrm{~m}_{2} / \mathrm{m}_{1}\right)}{\left(1+\mathrm{m}_{2} / \mathrm{m}_{1}\right)^{2}} \\
& =\frac{4 \times 1850}{(1+1850)^{2}} \\
& =0.00217=0.217 \%
\end{aligned}
$$

11. a
12. $\frac{1}{2} k x^{2}=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& \frac{1}{2} \mathrm{k}(.3)^{2}=\frac{1}{2}\left(242 \times 10^{4}\right)\left(7.2 \times \frac{5}{18}\right)^{2} \\
& \mathrm{k}=107.5 \times 10^{6} \\
& U=\frac{1}{2}(.15)^{2} \\
& =\frac{1}{2} \times 107.5 \times 10^{6} \times(.15)^{2} \\
& =1.21 \times 10^{6} \mathrm{~J} \\
& =121 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

13.

From figure
$\mathrm{T} \cos \theta=\mathrm{mg}$
$\mathrm{T} \sin \theta=\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{\mathrm{mv}^{2}}{\ell \sin \theta}$
From eq. (1) $\mathrm{T}=\frac{\mathrm{mg}}{\cos \theta}$
When the string is horizontal, θ must be 900 i.e., $\cos 900=0$
$\therefore \mathrm{T}=\frac{\mathrm{mg}}{0}=\infty$
Thus the tension must be infinite which is impossible, so the string can not be in horizontal plane.

The maximum angle θ is given by the breaking tension of the string in the equation $\mathrm{T} \cos \theta=\mathrm{m} . \mathrm{g}$

Here T (Maximum) $=8 \mathrm{~N}$ and $\mathrm{m}=0.4 \mathrm{~kg}$
$\therefore 8 \cos \theta=0.4 \times \mathrm{g}=0.4 \times 10=4$
$\cos \theta=(4 / 8)=\frac{1}{2}, \theta=60$ ㅇ
The angle with horizontal $=900-600=300$
From equation (2), $8 \sin 60 \circ=\frac{0.4 \times v^{2}}{4 \sin 60^{\circ}}$

$$
v^{2}=\frac{32 \sin ^{2} 60^{\circ}}{0.4}=80 \sin ^{2} 600
$$

$\Rightarrow \mathrm{v}=\sqrt{80} \sin 60{ }^{\circ}=7.7 \mathrm{~m} / \mathrm{sec}$
Hence correct answer is (A)
14. See fig, Here $v=360 \mathrm{~km} / \mathrm{hr}=100 \mathrm{~m} / \mathrm{sec}$

At lower point, $N-m g=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$,
$N=$ weight of the flyer $=m g+\frac{m v^{2}}{R}$
$N=70 \times 10+\frac{70 \times(10000)}{500}=2100 \mathrm{~N}$
At upper point, $N+m g=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$,
$N=\frac{\mathrm{mv}^{2}}{\mathrm{R}}-\mathrm{mg}=1400-700=700 \mathrm{~N}$
At middle point, $\mathrm{N}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}=1400 \mathrm{~N}$
Hence correct answer is (D)
15. As the belt does not slip, velocity of $A=$ velocity B
i.e. $v_{A}=v_{B}$ or $r_{A} \omega_{A}=r_{B} \omega_{B}$

Given, $r_{A}=20 \mathrm{~cm}, r_{B}=30 \mathrm{~cm}$
and $\omega_{\mathrm{B}}=2 \pi \times 100 / 60 \mathrm{rad} / \mathrm{sec}$
So, $20 \omega_{\mathrm{A}}=30 \times 2 \pi \times 100 / 60$

$$
=100 \pi
$$

or $\omega_{A}=5 \pi \mathrm{rad} / \mathrm{sec}$
We know that, $\omega=\omega_{0}+\alpha$ t or
$t=\frac{\omega}{\alpha} \quad\left(\mathrm{as} \omega_{0}=0\right)$
$\therefore \quad \mathrm{t}=\frac{5 \pi}{3.14}=5 \mathrm{sec}$
16. $\mathrm{I}_{\mathrm{A}}=\frac{\mathrm{m}_{\mathrm{A}} \mathrm{r}_{\mathrm{A}}^{2}}{2}$ and

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{B}}=\frac{\mathrm{m}_{\mathrm{B}} \mathrm{r}_{\mathrm{B}}^{2}}{2} \\
& \therefore \quad \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=\frac{\mathrm{r}_{\mathrm{A}}^{2}}{\mathrm{r}_{\mathrm{B}}^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\left(\because m_{A}=m_{B}\right) \tag{1}
\end{equation*}
$$

Now, $\quad m_{A}=\pi r_{A}^{2} t d_{A}$

$$
\mathrm{m}_{\mathrm{B}}=\pi \mathrm{r}_{\mathrm{B}}^{2} \mathrm{t} \mathrm{~d}_{\mathrm{B}}
$$

So, $\pi r_{A}^{2} \operatorname{td}_{A}=\pi r_{B}^{2} t d_{B}$
or $\frac{\mathrm{r}_{\mathrm{A}}^{2}}{\mathrm{r}_{\mathrm{B}}^{2}}=\frac{\mathrm{d}_{\mathrm{B}}}{\mathrm{d}_{\mathrm{A}}}$
From equations (1) and (2)
$\frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=\frac{\mathrm{d}_{\mathrm{B}}}{\mathrm{d}_{\mathrm{A}}}$. As $\mathrm{d}_{\mathrm{A}}>\mathrm{d}_{\mathrm{B}}$ hence $\mathrm{I}_{\mathrm{A}}<\mathrm{I}_{\mathrm{B}}$
17. According to conservation of angular momentum,

Angular momentum before collision = Angular momentum after collision

Angular momentum of cylinder before collision

$$
\begin{aligned}
\mathrm{J}_{1} & =\mathrm{I} \omega=(1 / 2) \mathrm{mR}^{2} \omega \\
& =(1 / 2) \times 2 \times 0.04 \times 3=0.12 \mathrm{~J} . \mathrm{sec}
\end{aligned}
$$

Now from (i)
$J_{c y l}+m_{p} v R=\left(I+m R^{2}\right) \omega$
$\Rightarrow \omega=\frac{0.12+0.5 \times 5 \times 0.2}{(1 / 2) \times 2 \times 0.04+0.5 \times 0.04}$

Now energy of system before collision

$$
\begin{aligned}
E & =(1 / 2) I \omega^{2}+(1 / 2) \mathrm{mv}^{2} \\
& =(1 / 2) \times(1 / 2) \times 2 \times 0.04 \times 9+(1 / 2) \times \\
& 0.5 \times 25=6.43 \mathrm{~J}
\end{aligned}
$$

Energy of system after collision
$E^{\prime}=(1 / 2) I^{\prime} \omega^{\prime 2}=(1 / 2) \times(1 / 2 M+m) R^{2} \omega^{2}$

$$
=(1 / 2) \times(1 / 2 \times 2+0.5) \times 0.04 \times(10.32)^{2}
$$

$$
=3.18 \mathrm{~J}
$$

Now $E-E_{1}=6.43-3.18=3.25 \mathrm{~J}$
18. (A)
$\frac{\mathrm{T}^{2}}{\mathrm{r}^{3}}=\frac{\left(\frac{2 \pi r}{\mathrm{v}_{0}}\right)^{2}}{\mathrm{r}^{3}}=\frac{(2 \pi r)^{2}}{\mathrm{r}^{3}} \frac{1}{\mathrm{GM}} \mathrm{r}=\frac{4 \pi^{2}}{\mathrm{GM}}$
$\left[\therefore \frac{\mathrm{mv}_{0}{ }^{2}}{\mathrm{r}}=\frac{\mathrm{GMm}}{\mathrm{r}^{2}}, \mathrm{v}_{0}^{2}=\frac{\mathrm{GM}}{\mathrm{r}}\right]$
Slope of $T^{2}-r^{3}$ curve $=\tan \theta$

$$
=\frac{\mathrm{T}^{2}}{\mathrm{r}^{3}}=\frac{4 \pi^{2}}{\mathrm{GM}}
$$

19. (A) The P.E of the mass at $d / 2$ due to the earth and moon is

$$
\mathrm{U}=-2 \frac{\mathrm{GM}_{1} \mathrm{~m}}{\mathrm{~d}}-2 \frac{\mathrm{GM}_{2} \mathrm{~m}}{\mathrm{~d}}
$$

or $\quad U=-\frac{2 G m}{d}\left(M_{1}+M_{2}\right)$
(Numerically)

$$
\begin{aligned}
& \frac{1}{2} m V_{e}^{2}=U \\
\Rightarrow & V_{e}=2 \sqrt{\frac{G}{d}\left(M_{1}+M_{2}\right)}
\end{aligned}
$$

20. $\mathrm{T}=\frac{\mathrm{PV}}{\mathrm{R}}$

$$
\begin{array}{ll}
\text { at } & V=b, P=\frac{a}{(1+1)}=\frac{a}{2} \\
\therefore & T=\frac{a b}{2 R}
\end{array}
$$

21. Using $\quad P V=n R T$, we note that
$\mathrm{P}_{1} \mathrm{~V}=\mathrm{nR} \mathrm{T}_{1}$
$P_{1}(1.005) V=n R\left(T_{1}+2\right)$
(note $\Delta \mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1}=0.005 \mathrm{P}_{1}$ and

$$
\Delta \mathrm{T}=2^{\circ} \mathrm{C}=2 \mathrm{~K}
$$

Dividing we get $1.005=\frac{T_{1}+2}{T_{1}}$
or $\quad 0.00 \mathrm{~T}_{1}=2 \Rightarrow \mathrm{~T}_{1}=400$
Thus in $0^{\circ} \mathrm{C}, \mathrm{t}_{1}=400-273=127^{\circ} \mathrm{C}$.
22. As the bubble rises the pressure gets reduced for constant temperature, if P is the standard atmospheric pressure, then

$$
\begin{aligned}
& (P+\rho g h) V_{0}=P V \\
& \text { or } \quad V=V_{0}\left(1+\frac{\rho g h}{P}\right)
\end{aligned}
$$

23. $Q=\frac{K A\left(Q_{1}-Q_{2}\right) t}{x}$
$\Rightarrow 4800 \times 80=\frac{\mathrm{K} \times 3600 \times 100 \times 3600}{10}$
$\Rightarrow \mathrm{K}=0.003 \mathrm{cal} / \mathrm{cm} /{ }^{\circ} \mathrm{C}$
24. \because Percentage increase in the amount of radiations emitted

$$
\begin{aligned}
\therefore & \frac{\mathrm{E}_{2}-\mathrm{E}_{1}}{\mathrm{E}_{1}} \times 100=\frac{\left(1.5 \mathrm{~T}_{1}\right)^{4}-\mathrm{T}_{1}^{4}}{T_{1}^{4}} \times 100 \\
\Rightarrow & \frac{\mathrm{E}_{2}-\mathrm{E}_{1}}{\mathrm{E}_{1}} \times 100=\left[(1.5)^{4}-1\right] \times 10 \\
& \frac{\mathrm{E}_{2}-\mathrm{E}_{1}}{\mathrm{E}_{1}} \times 100=400 \%
\end{aligned}
$$

Hence the correct answer is (B)
25. Given $\mathrm{t}_{\mathrm{w}}=2 \mathrm{~min}, \mathrm{t}_{\mathrm{alco}}=1 \mathrm{~min}$
$\mathrm{m}_{\mathrm{w}}=50 \mathrm{~g}, \mathrm{~m}_{\text {alco }}=50 \times 0.840 \mathrm{~g}$
$S_{W}=1$ in cgs units, $W=2 g$
Therefore,

$$
\begin{aligned}
& \frac{\mathrm{dQ}}{\mathrm{dt}_{\mathrm{A}}}=\frac{\mathrm{dQ}}{\mathrm{dt}_{\mathrm{W}}} \\
& \frac{\mathrm{~m}_{\mathrm{A}} \mathrm{~S}_{\mathrm{A}}+\mathrm{W}}{\mathrm{t}_{\mathrm{A}}}=\frac{\mathrm{m}_{\mathrm{W}} \mathrm{~S}_{\mathrm{W}}+\mathrm{W}}{\mathrm{t}_{\mathrm{W}}} \\
& \frac{40 \mathrm{~S}_{\mathrm{A}}+2}{1}=\frac{50 \times 1+2}{2} \\
& 80 \mathrm{~S}_{\mathrm{A}}+4=50+2 \\
& \mathrm{~S}_{\mathrm{A}}=\frac{48}{80} \\
& \mathrm{~S}_{\mathrm{A}}=\frac{6}{10}=0.6 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}
\end{aligned}
$$

26. Here, length of the rod,

$$
\Delta x=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}
$$

Diameter $=2 \mathrm{~cm}$,
radius $=r=1 \mathrm{~cm}=10^{-2} \mathrm{~m}$
Area of cross section

$$
\begin{aligned}
& \mathrm{a}=\pi \mathrm{r}^{2}=\pi\left(10^{-2}\right)^{2} \pi \mathrm{sq} \cdot \mathrm{~m} \\
& \Delta \mathrm{~T}=100-0=100^{\circ} \mathrm{C}
\end{aligned}
$$

Mass of ice melted, $\mathrm{m}=25 \mathrm{~g}$

$$
\text { As } \quad \mathrm{L}=80 \text { cal.g-1 }
$$

Heat conducted, $\Delta \mathrm{Q}=\mathrm{mL}=25 \times 80$

$$
\begin{aligned}
& =2000 \mathrm{cal}=2000 \times 4.2 \mathrm{~J} \\
& \Delta \mathrm{t}=5 \mathrm{~min}=300 \mathrm{~s}
\end{aligned}
$$

From $\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=\mathrm{KA} \frac{\Delta \mathrm{T}}{\Delta \mathrm{x}}$
$K=\frac{2000 \times 4.2 \times 20 \times 10^{-2}}{300 \times 10^{-4} \pi \times 100}$
$=1.78 \mathrm{Js}^{-1} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
27. The total surface area of the walls
$=2(60 \mathrm{~cm} \times 60 \mathrm{~cm}+60 \mathrm{~cm} \times 30 \mathrm{~cm}+60$
$\mathrm{cm} \times 30 \mathrm{~cm}$)
$=1.44 \mathrm{~m}^{2}$.
The thickness of the walls $=1.5 \mathrm{~cm}=0.015 \mathrm{~m}$.
The rate of heat flow into the box is
$\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=\frac{\operatorname{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{x}}$
$=\frac{\left(0.04 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C}\right)\left(1.44 \mathrm{~m}^{2}\right)\left(40^{\circ} \mathrm{C}\right)}{0.015 \mathrm{~m}}=154 \mathrm{~W}$.
The rate at which the ice melts is
$=\frac{154 \mathrm{~W}}{3.36 \times 10^{5} \mathrm{~J} / \mathrm{kg}}=0.46 \mathrm{~g} / \mathrm{s}$.
28.

$\because \frac{\mathrm{Pv}}{\mathrm{T}}=\mathrm{nR}=$ constant
For any state of an ideal gas. Therefore

$$
\begin{gathered}
\frac{\mathrm{P}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}}{\mathrm{~T}_{\mathrm{a}}}=\frac{\mathrm{P}_{\mathrm{c}} \mathrm{~V}_{\mathrm{c}}}{\mathrm{~T}_{\mathrm{c}}} \quad \text { or } \frac{\mathrm{P}_{0} \mathrm{~V}_{0}}{\mathrm{~T}_{0}}=\frac{2 \mathrm{P}_{0} 4 \mathrm{~V}_{0}}{\mathrm{~T}_{\mathrm{c}}} \\
\mathrm{~T}_{\mathrm{C}} \\
=8 \mathrm{~T}_{0}
\end{gathered}
$$

Thus change in internal energy

$$
\begin{aligned}
& \Delta U \quad=n C_{v} \Delta \mathrm{~T} \\
& =1 \times \frac{3}{2} \times R \times 7 T_{0}=\frac{21}{2} R T_{0} \\
& =10.5 \mathrm{RT}_{0}
\end{aligned}
$$

29. Efficiency of Carnot engine

$$
\begin{aligned}
& \eta=1-\frac{T_{2}}{T_{1}}=1-\frac{300}{900}=2 / 3 \\
\therefore \quad & \eta=66.6 \%
\end{aligned}
$$

30. Coefficient of cubical expansion of metal is given by

$$
\begin{aligned}
& \gamma=\frac{\Delta \mathrm{V}}{\mathrm{Vt}} \\
\frac{\Delta \mathrm{~V}}{\mathrm{~V}} & =\frac{0.12}{100}, \mathrm{t}=20^{\circ} \mathrm{C} \\
\therefore \quad \gamma & =\frac{0.12}{100 \times 20}=6.0 \times 10^{-5} \operatorname{per}^{\circ} \mathrm{C}
\end{aligned}
$$

Coefficient of linear expansion

$$
\alpha=\frac{\gamma}{3}=\frac{6.0 \times 10^{-5}}{3}=2.0 \times 10^{-5} \operatorname{Per}^{\circ} \mathrm{C}
$$

31. Let D_{o} and D_{t} be diameters of hole at $0^{\circ} \mathrm{C}$ and $t^{\circ} \mathrm{C}$ respectively.

Circumference of hole at $0^{\circ} \mathrm{C}$

$$
\ell=2 \pi \mathrm{r}_{0}=\pi \mathrm{D}_{0}
$$

Circumference of hole at $t=100^{\circ} \mathrm{C}$

$$
\ell \mathrm{t}=2 \pi \mathrm{r}_{\mathrm{t}}=\pi \mathrm{D}_{\mathrm{t}}
$$

From relation $\ell_{t}=\ell_{0}(1+\alpha . t)$, we get

$$
\begin{aligned}
\pi D_{t} & =\pi D_{0}\left(1+2.3 \times 10^{-5} \times 100\right) \\
D_{t} & =2.54(1+0.0023) \\
& =2.5458 \mathrm{~cm} .
\end{aligned}
$$

32. Let mass of hot water $=\mathrm{mkg}$
mass of cold water

$$
=(20-m) \mathrm{kg}
$$

Heat taken by cold water

$$
=(20-m) \times 1 \times(35-10)
$$

Heat given by hot water

$$
=m \times 1 \times(100-35)
$$

Law of mixture gives
Heat given by hot water
$=$ Heat taken by cold water
$\mathrm{m} \times 1 \times(100-35)=(20-\mathrm{m}) \times(35-10)$
$65 \mathrm{~m}=(20-\mathrm{m}) \times 25$
$65 \mathrm{~m}=500-25 \mathrm{~m}$
or $90 \mathrm{~m}=500$

$$
\mathrm{m}=\frac{500}{90}=5.56 \mathrm{~kg}
$$

33. Let final temperature $\mathrm{be}=\theta$

Heat taken by ice $=m_{1} L+m_{1} c_{1} \Delta \theta 1$

$$
\begin{aligned}
& =5 \times 80+5 \times 1(\theta-0) \\
& =400+5 \theta
\end{aligned}
$$

Heat given by water at $40^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =m_{2} c_{2} \Delta \theta_{2}=20 \times 1 \times(40-\theta) \\
& =800-20 \theta
\end{aligned}
$$

As Heat given = Heat taken

$$
\begin{aligned}
& 800-20 \theta=400+5 \theta \\
& 20 \theta=400 \\
& \theta=\frac{400}{25}=16^{\circ} \mathrm{C}
\end{aligned}
$$

34. a
35. The image will be formed by the plane mirror at a 30 cm behind it , while the image by convex mirror will be formed at 10 cm behind the convex mirror. Since for convex mirror $u=-50 \mathrm{~cm}$ as shown in figure.
$v=10 \mathrm{~cm}$
$\frac{1}{\mathrm{f}}=\frac{1}{-50}+\frac{1}{10}=\frac{-1+5}{50}=\frac{4}{50}$
$\mathrm{f}=\frac{50}{4}=12.5 \mathrm{~cm}$
Therefore the radius of curvature of convex mirror is
$r=2 \mathrm{f}=25 \mathrm{~cm}$
Hence correct answer is (B).
36. Let the mass is represented by M then

$$
M=f(V, F, T)
$$

Assuming that a function is product of power functions of V, F and T

$$
\mathrm{M}=\mathrm{KVX} \mathrm{FV} \mathrm{~T}^{Z}
$$

Where K is a dimension less constant of proportionality. The above equation dimensionally becomes.

$$
[\mathrm{M}]=\left[L T^{-1}\right]^{\mathrm{X}}\left[\mathrm{MLT}^{-2}\right]^{\mathrm{Y}}[\mathrm{~T}]^{2}
$$

i.e. $\quad[M]=[M Y]\left[L X+Y_{T}-x-2 y+z\right]$

So equation becomes

$$
[\mathrm{M}]=[\mathrm{MV}[\mathrm{x}+\mathrm{y} \mathrm{~T}-\mathrm{x}-2 \mathrm{y}+\mathrm{z}]
$$

For dimensionally correct expression,
$y=1, x+y=0$ and $-x-2 y+z=0$
$\Rightarrow \mathrm{x}=-1, \mathrm{y}=1$ and $\mathrm{z}=1$.
therefore $\mathrm{M}=\mathrm{KV}^{-1} \mathrm{FT}$.
Hence correct answer is (B).
37. Let $\hat{\mathrm{n}}_{1}$ and $\hat{\mathrm{n}}_{2}$ are the two unit vectors, then the sum is

$$
\mathbf{n}_{\mathrm{S}}=\hat{\mathrm{n}}_{1}+\hat{\mathrm{n}}_{2}
$$

or $\quad n_{s}^{2}=n_{1}^{2}+n_{2}^{2}+2 n_{1} n_{2} \cos \theta$

$$
=1+1+2 \cos \theta
$$

since it is given that n_{S} is also a unit vector, therefore

$$
\begin{aligned}
& 1=1+1+2 \cos \theta \\
& \text { or } \quad \cos \theta=-\frac{1}{2} \quad \text { or } \theta=1200
\end{aligned}
$$

Now the difference vector is

$$
\mathbf{n}_{\mathrm{d}}=\mathbf{n}_{1}-\mathbf{n}_{2}
$$

or

$$
\begin{aligned}
\mathrm{n}_{\mathrm{d}}^{2} & =\mathrm{n}_{1}^{2}+\mathrm{n}_{2}^{2}-2 \mathrm{n}_{1} \mathrm{n}_{2} \cos \theta \\
& =1+1-2 \cos \left(1200^{\circ}\right) \\
& =2-2(-1 / 2)=2+1=3
\end{aligned}
$$

$$
\therefore \quad n_{d}=\sqrt{3}
$$

Thus the correct answer is (B)
38. $\mathrm{h}=-\mathrm{ut}+1 / 2 \mathrm{gt}^{2} \Rightarrow 65=-12 \mathrm{t}+5 \mathrm{t}^{2}$
$\Rightarrow 5 t^{2}-12 \mathrm{t}-65-0 \Rightarrow \mathrm{t}=5 \mathrm{sec}$
Hence correct answer is (C)
39. Force causing the acceleration

$$
\begin{aligned}
& =400-200=200 \mathrm{~N} \\
\text { mass of the boy } & =200 / 9.8 \\
\text { hence acceleration } & =F / \mathrm{m}=\frac{200}{200} \times 9.8 \\
& =9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Hence correct answer is (A)
40. We know that

Time period $=\frac{\text { Circumfere nce }}{\text { Critical speed }}=\frac{2 \pi \mathrm{r}}{\sqrt{\mathrm{gr}}}$

$$
=\frac{2 \times 22 \times 4}{7 \times \sqrt{10 \times 4}}=4 \mathrm{sec}
$$

Hence correct answer is (D)
41. $\because \mathrm{n}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{~m}}}=\frac{1}{2 \pi} \sqrt{\frac{8+2}{0.1}}=\frac{5}{\pi}$
$=1.6 \mathrm{sec}^{-1}$

Hence correct answer is (D)
42. (B)

The resultant gravitational force on each particle provides it the necessary centripetal force
$\therefore \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\sqrt{\mathrm{F}^{2}+\mathrm{F}^{2}+2 \mathrm{~F}^{2} \cos 60^{\circ}}=\sqrt{3} \mathrm{~F}$,
But. $r=\frac{\sqrt{3}}{2} I \times \frac{2}{3}=\frac{\ell}{\sqrt{3}}$,
$\therefore \quad \mathrm{v}=\sqrt{\frac{\mathrm{GM}}{\ell}}$
43. [A]

The molecule strikes the wall along $A O$ and rebound along $O B$ such that

$$
\angle A O N=\angle N O B=45 \varrho
$$

The change in component momentum of each H_{2} molecule in a perpendicular direction the wall $\quad=\Delta \mathrm{P}=2 \mathrm{mv} \cos \theta$, where $\mathrm{mv}=$ momentum of molecule
$\therefore \quad \Delta \mathrm{P}=\left(3.32 \times 10^{-27}\right) \times 10^{3} \cos 450$
$\Rightarrow \Delta P=4.692 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$
Force exerted by N molecules on the wall

$$
=\Delta \mathrm{P} \times \mathrm{N}
$$

it A is the area of the wall on which the molecule strike, then pressure

$$
\begin{aligned}
P=F / A=\frac{N \times \Delta P}{A} & =\frac{10^{23} \times 4.692 \times 10^{24}}{2 \times 10^{-4}} \\
& =2.347 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

44. $[C] \quad v=\sqrt{\frac{\gamma P}{\rho}}$
$P=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \rho=1.3 \mathrm{~kg} / \mathrm{m}^{3}, v=330$ m / s

$$
\gamma=\frac{v^{2} \mathrm{P}}{\rho}=1.4
$$

Let f be the number of degree of freedom then

$$
\begin{aligned}
& C_{v}=f R / 2 \text { and } C_{p}=f R / 2+R=R(1+f / 2) \\
& \therefore \quad \gamma=\frac{C_{p}}{C_{V}}=\frac{2+f}{f}=1.4
\end{aligned}
$$

$(f=5)$
45. (B) The work done against the force of friction
$=\mu \mathrm{R} \times$ displacement $=0.2 \times 2 \times 9.8 \times 2$ (in one second)
$=(0.2 \times 2 \times 9.8 \times 2) \times 5($ in 5 second $)$
$=39.2 \mathrm{~J}$
Heat generated $=\frac{39.2}{4.2}=9.33 \mathrm{cal}$
46. (B) Retardation due to air $=\frac{\mathrm{g}}{10}$.

When air resistance is absent
$\Rightarrow \mathrm{T}=\frac{\mathrm{u} \sin \theta}{\mathrm{g}}$
$\Rightarrow \mathrm{T} \propto \frac{1}{\mathrm{~g}}$
Now if air resistance is considered then

$$
\begin{aligned}
& \quad \mathrm{T}^{\prime} \propto \frac{1}{\mathrm{~g}+\mathrm{g} / 10} \propto \frac{10}{1 \lg } \\
& \therefore \quad \frac{\mathrm{~T}-\mathrm{T}^{\prime}}{\mathrm{T}}=\frac{\frac{1}{\mathrm{~g}}-\frac{10}{1 / \mathrm{g}}}{1 / \mathrm{g}}=\frac{1}{11} \\
& \therefore \% \text { age change }=\frac{\mathrm{T}-\mathrm{T}^{\prime}}{\mathrm{T}} \times 100=\frac{100}{11} \\
& \approx \approx \% \text { decrease }
\end{aligned}
$$

47. In accordance with fig during the half revolution of the wheel, the point A covers $\pi R=(A C)$ horizontal distance while 2R (= BC) vertical distance,

So here $\mathrm{P}=\pi \mathrm{R} ; \theta=2 \mathrm{R}$ and $\pi=90^{\circ}$
So $D=\sqrt{(\pi R)^{2}+(2 R)^{2}}=R \sqrt{\pi^{2}+4}$
and $\phi=\tan ^{-1}\left[\frac{2 \mathrm{R}}{\pi \mathrm{R}}\right]=\tan ^{-1}\left[\frac{2}{\pi}\right]$
i.e. displacement has magnitude $R \sqrt{\pi^{2}+4}$ and makes an angle $\tan ^{-1}\left(\frac{2}{\pi}\right)$ with x-axis.

Hence correct answer is (B).
48. $v_{x}=d x / d t=2 c t, v_{y}=d y / d t=2 b t$
$\therefore \mathrm{v}=\sqrt{\mathrm{v}_{\mathrm{x}}^{2}+\mathrm{v}_{\mathrm{y}}^{2}}=2 \mathrm{t} \sqrt{\mathrm{c}^{2}+\mathrm{b}^{2}}$
Hence correct answer is (D)
49. $R=u t \Rightarrow t=R / u=12 / 8$

Now $h \quad=(1 / 2) g^{2}$

$$
=(1 / 2) \times 9.8 \times(12 / 8)^{2}=
$$

11 m
Hence correct answer is (A)
50. (A)

