SAFE HANDS & IIT-ian's PACE MONTHLY MAJOR TEST-07 (NB-15 NEET) ANS KEY Dt. 05-05-2023

PHYSICS			
Q. NO.	[ANS]		
1	С		
2	Α		
3	В		
4	В		
5	В		
6	С		
7	Α		
8	В		
9	С		
10	Α		
11	Α		
12	В		
13	Α		
14	D		
15	Α		
16	С		
17	D		
18	Α		
19	Α		
20	Α		
21	Α		
22	D		
23	Α		
24	В		
25	Α		
26	Α		
27	С		
28	D		
29	D		
30	В		
31	Α		
32	D		
33	Α		
34	Α		
35	В		
36	В		
37	В		
38	С		
39	Α		
40	D		
41	D		
42	В		
43	Α		
44	С		
45	В		
46	В		
47	В		
48	D		
49	Α		
50	Δ		

CHEM	ISTRY	
Q. NO.	[ANS]	Q
51	Α	
52	В	
53	В	
54	В	
55	D	
56	С	
57	С	
58	Α	
59	В	
60	В	
61	В	
62	С	
63	В	
64	Α	
65	Α	
66	С	
67	С	
68	С	
69	В	
70	D	
71	С	
72	В	
73	Α	
74	С	
75	В	
76	В	
77	В	
78	Α	
79	Α	
80	С	
81	D	
82	В	
83	Α	
84	С	
85	Α	
86	С	
87	D	
88	В	
89	С	
90	D	
91	В	
92	Α	
93	D	
94	В	
95	С	
96	D	
97	D	
98	В	
99	В	
100	D	

BOTANY			
Q. NO.	[ANS]		
101	С		
102	В		
103	С		
104	Α		
105	D		
106	D		
107	D		
108	В		
109	D		
110	С		
111	D		
112	А		
113	С		
114	С		
115	С		
116	В		
117	С		
118	В		
119	В		
120	С		
121	Α		
122	В		
123	С		
124	D		
125	Α		
126	D		
127	Α		
128	В		
129	С		
130	В		
131	С		
132	В		
133	Α		
134	С		
135	Α		
136	D		
137	В		
138	Α		
139	С		
140	С		
141	Α		
142	В		
143	С		
144	В		
145	D		
146	Α		
147	В		
148	С		
149	С		
150	А		

ZOOLOGY				
Q. NO.	[ANS]			
151	С			
152	В			
153	C			
154	A			
155	C			
156	D			
157	B			
158	D			
159	C			
160	B			
161	B			
162	Δ			
162	<u> </u>			
164	A C			
104				
100	D			
100	B			
167	D			
168	В			
169	В			
170	C			
171	C			
172	C			
173	C			
174	В			
175	D			
176	С			
177	С			
178	С			
179	С			
180	Α			
181	А			
182	Α			
183	С			
184	С			
185	В			
186	Α			
187	В			
188	В			
189	В			
190	Α			
191	С			
192	C			
193	D			
194	Δ			
195				
195	ں ۸			
107	A			
100	A			
198	U A			
199	A			
200	Α			

PHYSICS SOLUTIONS

01. R =
$$\frac{V}{I} = \frac{20\pm 1}{2.5\pm 0.5} = 8 \pm \Delta R$$

the error in the measurement is

$$= \frac{\Delta V}{V} + \frac{\Delta I}{I} = \frac{1}{20} + \frac{0.5}{2.5} = 0.05 + 0.2$$
$$= 0.25$$

 $\Delta R = 0.25 R = 0.25 \times 8 = 2$

Thus the resistance of the wire with the error is = 8 ± 2 ohm.

Hence correct answer is (C).

02. As shown in fig for quarter revolution

$$\Delta \vec{v} = \vec{v}_2 - \vec{v}_1$$
 and $\theta = 90^{\circ}$,

So
$$\Delta \vec{v} = \sqrt{v^2 + v^2} = (\sqrt{2})v$$

$$\phi = \tan^{-} \left(\frac{-}{v} \right) = 45^{\circ}$$

 $\Delta \vec{v} = \sqrt{2}v$ south west.

Hence correct answer is (A).

03. Car covers a distance s before coming to rest using relation as $v^2 = u^2 + 2as$

$$\Rightarrow$$
 s = $\frac{20 \times 20}{4 \times 2}$ = 50 m

To avoid the clash the remaining distance 100 - 50 = 50 m must be covered by the car with uniform velocity 20 m/s during the reaction time Δt .

Hence
$$\frac{50}{\Delta t} = 20 \text{ or } \Delta t = \frac{50}{20} = 2.5 \text{ sec}$$

Hence correct answer is (B)

MAJOR TEST-07 (NEET) SOLUTIONS [NB-15]

04. Let s be the distance between that two spots. Also assume that the velocity of the motor boat in still water is v and the velocity of flow of water is u.

Then, for downward journey,

$$s/t_1 = v + u$$
 ...(1)

For upward journey,

$$s/t_2 = v - u$$
 ...(2)

Adding eq. (1) to (2),

or t =
$$\frac{s}{v} = \frac{2t_1t_2}{(t_1 + t_2)} = \frac{2 \times 8 \times 12}{(8 + 12)} = 9.6$$
 hr

Hence correct answer is (B)

05. Let the ball B hits the ball A after t sec

The X-component of velocity of A is

v₀ cos 37º = 700 cos 37º

The X-compoment of position of B is

300 cos 37º

The collision will take place when the X-coordinate of A is the same as that of B.

As the collision takes place at a time t, hence

700 cos 37º × t = 300 cos 37º

or t = (300/700) = (3/7) sec

In this time the ball B has fallen through a distance

y = -1/2 gt² (Free fall of body B)

 $= -1/2 \times 980 \times (3 / 7)^2 = -90$ cm

Hence the ball B falls a distance 90 cm

Hence correct answer is (B)

06. Total mass = 80 + 40 = 120 kg

The rope cannot with stand this load so the fire man should slide down the rope with some acceleration

 \therefore The maximum tension = 100 × 9.8 N

 \Rightarrow a = 1.63 m/s²

Hence correct answer is (C)

07. The engine, coach, coupling and resistance are, shown in fig

Driving force = 4500 N

Opposing force (Resistance)

$$= \frac{(5+4)10^{4}}{100} = 900 \text{ N}$$

$$\underbrace{\text{COACH}}_{T} \underbrace{\text{ENGINE}}_{\text{DRIVING}}$$

$$\underbrace{\text{COACH}}_{FORCE}$$

Resultant force = 4500 - 900 = 3600 N

Mass of engine and coach = 9×10^4 kg

According to Newton's law, F = ma

- \therefore 3600 = 9 × 10⁴ a
- or $a = (3600) / (9 \times 10^4) = 0.04 \text{ m/sec}^2$

So acceleration of the train = 0.04 m/sec^2

Now considering the equilibrium of the coach only, we have

$$(T - R) = 4 \times 10^{4} \times 0.04 \qquad (\because F = ma)$$

or $T - \frac{4 \times 10^{4}}{100} = 4 \times 10^{4} \times 0.04$,
 $T = 4 \times 10^{4} \times 0.04 + 4 \times 10^{2}$
 $= 1600 + 400 = 2000 N$
Hence correct answer is (A)

08. b

09.
$$\Delta k = W$$
 (Work energy theorem)
 $\left(\frac{1}{2}mv^2 - 0\right) = FS$
 $\frac{1}{2}mv^2 = \mu mgS$

$$S = \frac{v^2}{2\mu g}$$
 $v \rightarrow same$
 $\mu \rightarrow same$
 $S \rightarrow same$

10. Let m_1 and m_2 be the masses of electron and hydrogen atom respectively. If u_1 and v_1 be the initial and final velocities of electron, then

initial kinetic energy of electron

$$K_{j} = \left(\frac{1}{2}\right) m u_{1}^{2}$$

final kinetic energy of electron

$$K_{f} = \left(\frac{1}{2}\right) m v_{1}^{2}$$

Fractional decrease in K.E.,

$$\frac{K_{i} - K_{f}}{K_{i}} = 1 - \frac{v_{1}^{2}}{u_{1}^{2}} \qquad \dots (1)$$

For such a collision, we have

$$\mathbf{v_1} = \left(\frac{\mathbf{m}_1 - \mathbf{m}_2}{\mathbf{m}_1 + \mathbf{m}_2}\right) \mathbf{u_1}$$

$$\therefore \quad \frac{\mathbf{v}_1}{\mathbf{u}_1} = \left(\frac{\mathbf{m}_1 - \mathbf{m}_2}{\mathbf{m}_1 + \mathbf{m}_2}\right) \qquad \dots (2)$$

From eqs. (1) and (2) we have

$$\frac{K_i - K_f}{K_i} = 1 - \left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2$$
$$= \frac{4m_1m_2}{(m_1 + m_2)^2}$$
or
$$\frac{K_i - K_f}{K_i} = \frac{4(m_2 / m_1)}{(1 + m_2 / m_1)^2}$$
$$= \frac{4 \times 1850}{(1 + 1850)^2}$$
$$= 0.00217 = 0.217\%$$

11. a

SAFE HANDS & IIT-ian's PACE

12.
$$\frac{1}{2}$$
 kx² = $\frac{1}{2}$ mv²
 $\frac{1}{2}$ k(.3)² = $\frac{1}{2}$ (242 × 10⁴) $\left(7.2 \times \frac{5}{18}\right)^2$
k = 107.5 × 10⁶
U = $\frac{1}{2}$ (.15)²
= $\frac{1}{2}$ × 107.5 × 10⁶ × (.15)²
= 1.21 × 10⁶ J
= 121 × 10⁴ J

13.

From figure

 $T \cos \theta = mg$ (1)

$$T\sin\theta = \frac{mv^2}{r} = \frac{mv^2}{\ell\sin\theta} \qquad \dots (2)$$

From eq. (1) T = $\frac{\text{mg}}{\cos \theta}$

When the string is horizontal, θ must be 90° i.e., cos 90° = 0

 \therefore T = $\frac{\text{mg}}{0} = \infty$

Thus the tension must be infinite which is impossible, so the string can not be in horizontal plane.

The maximum angle θ is given by the breaking tension of the string in the equation T cos θ = m.g

Here T (Maximum) = 8 N and m = 0.4 kg

$$\therefore 8\cos\theta = 0.4 \times g = 0.4 \times 10 = 4$$

MAJOR TEST-07 (NEET) SOLUTIONS [NB-15]

$$\cos \theta = (4/8) = \frac{1}{2}, \ \theta = 60^{\circ}$$

The angle with horizontal = $90^{\circ} - 60^{\circ} = 30^{\circ}$

From equation (2), 8 sin 60° = $\frac{0.4 \times v^2}{4 \sin 60^\circ}$

$$v^2 = \frac{32\sin^2 60^\circ}{0.4} = 80\sin^2 60^\circ$$

$$\Rightarrow$$
 v = $\sqrt{80}$ sin 60° = 7.7 m/sec

Hence correct answer is (A)

14. See fig, Here v = 360 km/hr = 100 m/sec

and $\omega_B = 2\pi \times 100/60$ rad/sec

So, 20 ω_A = 30 × 2 π × 100/60

= 100 π

or $\omega_A = 5\pi \text{ rad/sec}$ We know that, $\omega = \omega_0 + \alpha t$ or $t = \frac{\omega}{\alpha}$ (as $\omega_0 = 0$) $\therefore t = \frac{5\pi}{3.14} = 5 \text{ sec}$ 16. $I_A = \frac{m_A r_A^2}{2}$ and $I_B = \frac{m_B r_B^2}{2}$, $\therefore \frac{I_A}{I_B} = \frac{r_A^2}{r_B^2}$ $(\because m_A = m_B)$ (1) Now, $m_A = \pi r_A^2 t d_A$ $m_B = \pi r_B^2 t d_B$ So, $\pi r_A^2 t d_A = \pi r_B^2 t d_B$

or
$$\frac{r_A^2}{r_B^2} = \frac{d_B}{d_A}$$
 (2)

From equations (1) and (2)

$$\frac{I_A}{I_B} = \frac{d_B}{d_A}$$
. As $d_A > d_B$ hence $I_A < I_B$

17. According to conservation of angular momentum,

Angular momentum before collision = Angular momentum after collision(i)

Angular momentum of cylinder before collision

$$J_1 = I\omega = (1/2) mR^2 \omega$$

Now from (i)

 $J_{cvI} + m_p vR = (I + mR^2) \omega$

$$\Rightarrow \omega = \frac{0.12 + 0.5 \times 5 \times 0.2}{(1/2) \times 2 \times 0.04 + 0.5 \times 0.04}$$

MAJOR TEST-07 (NEET) SOLUTIONS [NB-15]

=10.3 rad/sec
Now energy of system before collision

$$E = (1/2) I\omega^{2} + (1/2) mv^{2}$$

$$= (1/2) \times (1/2) \times 2 \times 0.04 \times 9 + (1/2) \times 0.5 \times 25 = 6.43 J$$
Energy of system after collision

$$E' = (1/2) I'\omega'^{2} = (1/2) \times (1/2 M + m) R^{2}\omega^{2}$$

$$= (1/2) \times (1/2 \times 2 + 0.5) \times 0.04 \times (10.32)^2$$

Now $E - E_1 = 6.43 - 3.18 = 3.25 J$

18. (A)

$$\frac{T^{2}}{r^{3}} = \frac{\left(\frac{2\pi r}{v_{0}}\right)^{2}}{r^{3}} = \frac{(2\pi r)^{2}}{r^{3}} \frac{1}{GM} r = \frac{4\pi^{2}}{GM}$$
$$[\therefore \quad \frac{mv_{0}^{2}}{r} = \frac{GMm}{r^{2}}, \quad v_{0}^{2} = \frac{GM}{r}]$$

Slope of $T^2 - r^3$ curve = tan θ

$$=\frac{T^2}{r^3}=\frac{4\pi^2}{GM}$$

19. (A) The P.E of the mass at d/2 due to the earth and moon is

20. $T = \frac{PV}{R}$ at $V = b, P = \frac{a}{(1+1)} = \frac{a}{2}$ $\therefore T = \frac{ab}{2R}$ 21. Using PV = nRT, we note that $P_1V = nRT_1$ $P_1 (1.005)V = nR (T_1 + 2)$ (note $\Delta P = P_2 - P_1 = 0.005 P_1$ and $\Delta T = 2^{Q}C = 2K$ Dividing we get $1.005 = \frac{T_1 + 2}{T_1}$ or $0.00T_1 = 2 \Longrightarrow T_1 = 400$ Thus in 0^QC, $t_1 = 400 - 273 = 127^{Q}C$.

22. As the bubble rises the pressure gets reduced for constant temperature, if P is the standard atmospheric pressure, then

(P +
$$\rho$$
gh) V₀ = PV
or V = V₀ $\left(1 + \frac{\rho gh}{P}\right)$

23. Q =
$$\frac{KA(Q_1 - Q_2)t}{x}$$

 $\Rightarrow 4800 \times 80 = \frac{K \times 3600 \times 100 \times 3600}{10}$
 $\Rightarrow K = 0.003 \text{ cal/cm/}^{\circ}C$

24. ∵ Percentage increase in the amount of radiations emitted

$$\therefore \quad \frac{E_2 - E_1}{E_1} \times 100 = \frac{(1.5T_1)^4 - T_1^4}{T_1^4} \times 100$$
$$\implies \frac{E_2 - E_1}{E_1} \times 100 = [(1.5)^4 - 1] \times 10$$
$$\frac{E_2 - E_1}{E_1} \times 100 = 400\%$$

Hence the correct answer is (B)

25. Given $t_W = 2 \min, t_{alco} = 1 \min$ $m_W = 50g, m_{alco} = 50 \times 0.8 \ 40g$ $S_W = 1 \ln cgs units, W = 2g$ Therefore, $\frac{dQ}{dt_A} = \frac{dQ}{dt_W}$ $\frac{m_A S_A + W}{t_A} = \frac{m_W S_W + W}{t_W}$ $\frac{40S_A + 2}{1} = \frac{50 \times 1 + 2}{2}$ $80S_A + 4 = 50 + 2$ $S_A = \frac{48}{80}$ $S_A = \frac{6}{10} = 0.6 \ cal/g^{o}C$

26. Here, length of the rod,

```
\Delta x = 20 \text{ cm} = 20 \times 10^{-2} \text{ m}
Diameter = 2 cm,

radius = r = 1 cm = 10<sup>-2</sup> m

Area of cross section

a = \pi r^2 = \pi (10^{-2})^2 \pi \text{ sq. m}
\Delta T = 100 - 0 = 100^{\circ}\text{C}
Mass of ice melted, m = 25g

As L = 80 cal.g-1

Heat conducted, \Delta Q = \text{mL} = 25 \times 80

= 2000 \text{ cal} = 2000 \times 4.2\text{J}
\Delta t = 5 \text{ min} = 300 \text{ s}
From \frac{\Delta Q}{\Delta t} = \text{KA} \frac{\Delta T}{\Delta x}

K = \frac{2000 \times 4.2 \times 20 \times 10^{-2}}{300 \times 10^{-4} \pi \times 100}
=1.78Js<sup>-1</sup>m<sup>-1</sup> °C<sup>-1</sup>
```

SAFE HANDS & IIT-ian's PACE

MAJOR TEST-07 (NEET) SOLUTIONS [NB-15]

27. The total surface area of the walls

 $= 2(60 \text{ cm} \times 60 \text{ cm} + 60 \text{ cm} \times 30 \text{ cm} + 60)$

 $cm \times 30 cm$)

 $= 1.44 \text{ m}^2$.

The thickness of the walls = 1.5 cm = 0.015 m.

The rate of heat flow into the box is

 $\frac{\Delta Q}{\Delta t} = \frac{KA(\theta_1 - \theta_2)}{x}$ $=\frac{(0.04W/m^{\circ}C)(1.44m^{2})(40^{\circ}C)}{0.015m}=154$ W.

The rate at which the ice melts is

$$=\frac{154W}{3.36\times10^5 \,\mathrm{J/kg}}=0.46\,\mathrm{g/s}.$$

28.

$$\therefore \frac{Pv}{T} = nR = constant$$

For any state of an ideal gas. Therefore

$$\frac{P_a V_a}{T_a} = \frac{P_c V_c}{T_c} \text{ or } \frac{P_0 V_0}{T_0} = \frac{2P_0 4V_0}{T_c}$$
$$T_c = 8T_0$$

Thus change in internal energy

$$\Delta U = nC_{V}\Delta T$$
$$= 1 \times \frac{3}{2} \times R \times 7T_{0} = \frac{21}{2}RT_{0}$$
$$= 10.5 RT_{0}$$

29. Efficiency of Carnot engine

$$\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{300}{900} = 2/3$$

∴ η = 66.6 %

30. Coefficient of cubical expansion of metal is given by

$$\gamma = \frac{\Delta V}{Vt}$$
$$\frac{\Delta V}{V} = \frac{0.12}{100}, t = 20^{\circ}C$$
$$\therefore \quad \gamma = \frac{0.12}{100 \times 20} = 6.0 \times 10^{-5} \text{ per }^{\circ}C$$

Coefficient of linear expansion

$$\alpha = \frac{\gamma}{3} = \frac{6.0 \times 10^{-5}}{3} = 2.0 \times 10^{-5} \text{ Per °C}$$

31. Let D_0 and D_t be diameters of hole at 0°C and t°C respectively.

Circumference of hole at 0°C

$$\ell = 2\pi r_0 = \pi D_0$$

Circumference of hole at t = 100° C

 $\ell t = 2\pi r_t = \pi D_t$

From relation $\ell_t = \ell_0 (1 + \alpha.t)$, we get

 $\pi D_t = \pi D_0 (1 + 2.3 \times 10^{-5} \times 100)$

 $D_{t} = 2.54 (1 + 0.0023)$

= 2.5458 cm.

32. Let mass of hot water = m kg

mass of cold water

= (20 - m) kg

Heat taken by cold water

 $= (20 - m) \times 1 \times (35 - 10)$

Heat given by hot water

 $= m \times 1 \times (100 - 35)$

Law of mixture gives

Heat given by hot water

65 m = 500 – 25 m

= Heat taken by cold water $m \times 1 \times (100 - 35) = (20 - m) \times (35 - 10)$ $65 \text{ m} = (20 - \text{m}) \times 25$

or 90 m = 500

$$m = \frac{500}{90} = 5.56 \text{ kg}$$

33. Let final temperature be = θ

Heat taken by ice =
$$m_1L + m_1c_1\Delta\theta_1$$

$$= 5 \times 80 + 5 \times 1 (\theta - 0)$$

= 400 + 5θ

Heat given by water at 40°C

$$= m_2 c_2 \Delta \theta_2 = 20 \times 1 \times (40 - \theta)$$

= 800 **-** 20 θ

As Heat given = Heat taken

$$800 - 20 \theta = 400 + 5 \theta$$

$$\theta = \frac{400}{25} = 16^{\circ} \text{ C}$$

34. a

35. The image will be formed by the plane mirror at a 30 cm behind it, while the image by convex mirror will be formed at 10 cm behind the convex mirror. Since for convex mirror u = -50 cm as shown in figure.

$$\frac{1}{f} = \frac{1}{-50} + \frac{1}{10} = \frac{-1+5}{50} = \frac{4}{50}$$
$$f = \frac{50}{4} = 12.5 \text{ cm}$$

Therefore the radius of curvature of convex mirror is

Hence correct answer is (B).

36. Let the mass is represented by M then

Assuming that a function is product of power functions of V, F and T

$$M = KV^X F^Y T^Z$$

MAJOR TEST-07 (NEET) SOLUTIONS [NB-15]

Where K is a dimension less constant of proportionality. The above equation dimensionally becomes.

$$[M] = [LT^{-1}]^{x} [MLT^{-2}]^{y} [T]^{2}$$

i.e. $[M] = [MY] [L^{X} + Y_{T} - x - 2y + z]$

So equation becomes

$$[M] = [My Lx + y T - x - 2y + z]$$

For dimensionally correct expression,

$$y = 1$$
, $x + y = 0$ and $-x - 2y + z = 0$

 \Rightarrow x = -1, y = 1 and z = 1.

therefore $M = KV^{-1} FT$.

Hence correct answer is (B).

37. Let \hat{n}_1 and \hat{n}_2 are the two unit vectors, then the sum is

$$\mathbf{n_{S}} = \hat{n}_{1} + \hat{n}_{2}$$
 or
$$n_{s}^{2} = n_{1}^{2} + n_{2}^{2} + 2n_{1}n_{2}\cos\theta$$

= 1 + 1 + 2 $\cos \theta$

since it is given that ${\bf n}_{\rm S}$ is also a unit vector, therefore

$$1 = 1 + 1 + 2\cos\theta$$

or
$$\cos\theta = -\frac{1}{2} \quad \text{or } \theta = 120^{\circ}$$

Now the difference vector is

or $n_d^2 = n_1^2 + n_2^2 - 2n_1n_2 \cos \theta$ = 1 + 1 − 2 cos (120°) = 2 − 2 (−1/2) = 2 + 1 = 3 \therefore $n_d = \sqrt{3}$

Thus the correct answer is (B)

38. h = -ut + 1/2 gt²
$$\Rightarrow$$
 65 = -12t + 5t²
 \Rightarrow 5t² - 12t - 65 - 0 \Rightarrow t = 5 sec
Hence correct answer is (C)
39. Force causing the acceleration
 $= 400 - 200 = 200N$
mass of the boy $= 200/9.8$
hence acceleration $= F/m = \frac{200}{200} \times 9.8$
 $= 9.8 \text{ m/s}^2$
Hence correct answer is (A)
40. We know that
Time period $= \frac{\text{Circumfere nce}}{\text{Critical speed}} = \frac{2\pi r}{\sqrt{gr}}$

$$= \frac{2 \times 22 \times 4}{7 \times \sqrt{10 \times 4}} = 4 \text{ sec}$$

Hence correct answer is (D)

41. ::
$$n = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m}} = \frac{1}{2\pi} \sqrt{\frac{8+2}{0.1}} = \frac{5}{\pi}$$

= 1.6 sec⁻¹

Hence correct answer is (D)

42. (B)

The resultant gravitational force on each particle provides it the necessary centripetal force

$$\therefore \quad \frac{mv^2}{r} = \sqrt{F^2 + F^2 + 2F^2 \cos 60^\circ} = \sqrt{3} \text{ F},$$

But. $r = \frac{\sqrt{3}}{2} \text{ I} \times \frac{2}{3} = \frac{\ell}{\sqrt{3}},$
$$\therefore \qquad v = \sqrt{\frac{GM}{\ell}}$$

43. [A]

The molecule strikes the wall along AO and rebound along OB such that

The change in component momentum of each H₂ molecule in a perpendicular direction the wall $= \Delta P = 2 \text{ mv} \cos\theta$, where mv = momentum of molecule

 $\therefore \Delta P = (3.32 \times 10^{-27}) \times 10^3 \cos 45^{\circ}$

 $\Rightarrow \Delta P = 4.692 \times 10^{-24} \text{ kg m/sec}$

Force exerted by N molecules on the wall

 $= \Delta P \times N$

it A is the area of the wall on which the molecule strike, then pressure

$$P = F/A = \frac{N \times \Delta P}{A} = \frac{10^{23} \times 4.692 \times 10^{24}}{2 \times 10^{-4}}$$
$$= 2.347 \times 10^3 \text{ N/m}^2$$

44. [C] \therefore $v = \sqrt{\frac{\gamma P}{\rho}}$

P = 1.013 × 10⁵ N/m², ρ = 1.3kg/m³, ν = 330 m/s

$$\gamma = \frac{v^2 P}{\rho} = 1.4$$

Let f be the number of degree of freedom then

C_v = f R/2 and C_p= fR/2 + R = R (1 + f/2)
∴
$$\gamma = \frac{C_P}{C_V} = \frac{2+f}{f} = 1.4$$

(f = 5)

SAFE HANDS & IIT-ian's PACE

MAJOR TEST-07 (NEET) SOLUTIONS [NB-15]

45. (B) The work done against the force of friction = μ R × displacement = 0.2 × 2 × 9.8 × 2 (in one second) = (0.2 × 2 × 9.8 × 2) × 5 (in 5 second) = 39. 2J Heat generated = $\frac{39.2}{4.2}$ = 9.33 cal

46. (B) Retardation due to air = $\frac{g}{10}$.

When air resistance is absent

$$\Rightarrow T = \frac{u \sin \theta}{g}$$
$$\Rightarrow T \propto \frac{1}{g}$$

Now if air resistance is considered then

$$T' \propto \frac{1}{g+g/10} \propto \frac{10}{11g}$$

$$\therefore \quad \frac{T-T'}{T} = \frac{\frac{1}{g} - \frac{10}{11g}}{1/g} = \frac{1}{11}$$

$$\therefore \text{ % age change} = \frac{T-T'}{T} \times 100 = \frac{100}{11}$$

 \approx 9 % decrease

47. In accordance with fig during the half revolution of the wheel, the point A covers πR = (AC) horizontal distance while 2R (= BC) vertical distance,

i.e. displacement has magnitude R $\sqrt{\pi^2 + 4}$ and makes an angle $\tan^{-1}\left(\frac{2}{\pi}\right)$ with x-axis. Hence correct answer is (B). 48. $v_x = dx/dt = 2ct, v_y = dy/dt = 2bt$ $\therefore \mathbf{v} = \sqrt{\mathbf{v}_{\mathrm{x}}^2 + \mathbf{v}_{\mathrm{y}}^2} = 2\mathbf{t}\sqrt{\mathbf{c}^2 + \mathbf{b}^2}$ Hence correct answer is (D) 49. $R = ut \implies t = R/u = 12/8$ Now h $= (1/2) \text{ gt}^2$ $= (1/2) \times 9.8 \times (12/8)^2 =$ 11 m Hence correct answer is (A) 50. **(A)**